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Bjorken and Feynman have suggested a quark-parton-model approach to predicting the final-state

hadron spectra in deep-inelastic processes. Since the final-state interaction in their approach is

characterized by short-range correlations in rapidity, it is natural to ask whether parton models with

final-state interactions based on conventional multiperipheral dynamics might provide realizations of
their picture. This is found to be untrue. We argue by studying perturbation-theory models (P" and

cutoff vector-gluon ladder models) and by formulating a rather general intuitive space-time argument

that in naive parton models of this type one cannot avoid the appearance of isolated-quark quantum

numbers in the final state. In the X$' models the final-state interaction always vanishes in the

deep-inelastic region (as well as in the high-energy annihilation region) regardless of the size of X. In

the vector-gluon model, the final-state interaction does not vanish asymptotically, but the struck quark

parton cannot exchange its charge with the target fragments. The character of parton dynamics

necessary to realize the Bjorken-Feynman picture is discussed.

I. INTRODUCTION

Recently Bjorken' and co-workers, ' and Feyn-
man' and co-workers' have proposed a quark-
parton-model approach to understanding the final
hadronic states in deep-inelastic processes. It is
the purpose of the present article to ask whether
simple parton models based on conventional dy-
namical mechanisms lead to conclusions in agree-
ment with the Bjorken-Feynman expectations. "
We consider perturbation-theoretic models which
scale in the deep-inelastic region and consider
final-state parton-parton interactions which are
multiperipheral in character. The Bjorken- Feyn-
man picture does not emerge. In particular, if
partons were quarks, then conventional multipe-
ripheral mechanisms could not prohibit their pro-
duction in deep-inelastic processes. We speculate
briefly on what new features parton-parton inter-
actions would need in order to realize the Bjorken-
Feynman picture. "

Our motivation for studying this problem is the
intriguing possibility that partons are bare quarks.
If that were the case, then the parton model would
provide a simple realization of many current-
algebra sum rules and might really be of funda-
mental significance. However, given this hypoth-
esis, the model must face the question as to why
quark quantum numbers are not observed experi-
mentally as the products of deep-inelastic reac-
tions. Traditionally, this problem is not consid-
ered seriously in discussions of the reaction e+p- e+ anything, where no final-state hadrons are ob-

served. The rationale for neglecting this problem
is the argument that the parton system after col-
lision converts to hadrons with unit probability.
Hence, an understanding of the final-state inter-
actions responsible for the conversion of quarks to
hadrons is not necessary in understanding the
function vW, . However, experiments are now be-
ginning to study the final states in deep-inelastic
collisions; so this problem must be faced. In fact,
a clear picture of the dynamics which converts the
quark partons to real hadrons is necessary before
one can claim that the quark-parton model is an
approximate representation of a real theory and
not just a mnemonic device. Recently these prob-
lems were considered to some extent in Refs. 1-
3, and a quark-parton picture of hadronic final
states was introduced. Many interesting and very
reasonable predictions were then deduced from
this point of view. It is the purpose of this article,
however, to consider critically some of these
ideas both with the use of intuitive infinite-momen-
tum arguments and the study of graphs in perturba-
tion-theoretic realizations of the parton model.
We shall see that to realize the Bjorken-Feynman
model appears to require dynamical mechanisms
which fall outside simple relativistic perturbation-
theory or multiperipheral realizations of the par-
ton model.

This article is organized as follows. In Sec. II
we briefly sketch the quark-parton picture of final-
state interactions in deep-inelastic processes. In
Sec. III a space-time argument is presented which
motivates our suspicion that typical dynamics
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based solely on short-range correlations in mo-
mentum space cannot implement the physical pic-
ture of Sec. II. Also included in Sec. III are addi-
tional perturbative arguments in support of this
view. Section IV summarizes the detailed,
straightforward calculations of the physical effects
discussed in Sec. III. This is done in the context
of several perturbation-theoretic parton models.
The explicit calculations are relegated to several
appendixes. Finally, in Sec. V. we discuss the
implications of these results and speculate upon
possible additional dynamical effects which would
have to be incorporated into a quark-parton model
to implement the ideas of Sec. II.

II. QUARK-PARTON MODEL AND FINAL STATES

Before proceeding with the substance of this
article, we should review briefly the quark-parton
picture of final states as developed by Bjorken and
co-workers, "and Feynman and co-workers. "
This discussion is borrowed in large part from
Ref. 2. Consider deep-inelastic electron scattering
in the over-all center-of-mass frame. Before the
collision the hadron moving in the +z direction is
viewed as an assembly of partons (black dots in
Fig. I) each possessing small momentum trans-
verse to the z axis. The electron (open circle in
Fig. I) approaches in the -x direction. The elec-
tron then scatters (single-photon exchange) vio-
lently off a charged parton which is given a large
momentum transverse to the initial beam direction
(Fig. 2). This configuration of partons must now
evolve into an assembly of ordinary hadrons which
are observed in the lab. In this process the struck
parton's quark quantum numbers must also leak
back to the partons left behind. '

In guessing how the struck parton evolves into
hadrons one evokes a central assumption of the par-
ton model: that only partons possessing small rela-
tive subenergies interact significantly. This as-
sumption plays an important role in establishing
the impulse approximation for e+p e+ anything;
so it is natural to assume that this same dynami-
cal assumption also applies to the evolution of the
struck parton in Fig. 2. Since the struck parton

FIG. 2. Configuration of partons just after the deep-
inelastic collision.

has a large subenergy when combined with any
other parton in Fig. 2, one then argues that it ini-
tially evolves independently of the partons left be-
hind. Furthermore, the evolution of that parton
into other partons should be dominated by subpro-
cesses each of which only involves partons nearby
in momentum space. This strongly suggests that
the struck parton interacts with those left behind
by forming a cascade of partons until Fig. 2 has
evolved into Fig. 3. The last partons in this cas-
cade then have low relative subenergies when
combined with those left behind, and there will be
considerable interaction at this point. It is through
this interaction that the fractional charge original-
ly carried by the struck parton may be "neutral-
ized" by the fractional charge of the fragments of
the tar get. '

The final ingredient in this picture is the relation
between the parton configuration in Fig. 3 and an
actual final state of hadrons. Again, since only
partons nearby in phase space are assumed to
interact significantly, it is sensible to assume that
only partons nearby in phase space combine to
form an outgoing hadron. Thus, Fig. 3 is replaced
by Fig. 4, for example.

From these assumptions, in particular the as-
sumption that only partons nearby in phase space
interact significantly, one can proceed to postulate
the existence of parton fragmentation functions.
The argument for this parallels the argument for
Feynman- Yang scaling in hadron-hadron collisions
at high energy. ' These functions, which give the
probability that a struck parton of type i fragments
into a hadron of type c with a fraction x of the
struck parton's momentum, are denoted G,, (x) in
Ref. 2. From our discussion above, one expects
that G;, (x) - c,,/x for small x. Then it follows that
multiplicities in e'e collisions, say, at center-
of-mass energy E, should grow as 1nE. This be-

FIG. 1. Configuration of partons in phase space im-
mediately before a deep-inelastic collision. The open
circle is the incident electron.

FIG. 3. Configuration of partons long after the deep-
inel astic collision.



HADRONIC FINAL STATES OF DEEP-INELASTIC. . . 3639

hadrons

FIG. 4. A possible configuration of hadrons in phase
space resulting from the parton configuration of Fig. 3.

havior can also be read directly from Figs. 1-4.
The functions G„clearly define a program for pre-
dicting, analyzing, and interpreting the experi-
mental data on deep-inelastic processes such as
e +p —e+ hadron+ anything, e' + e -hadron+ any-
thing, p+p-hadron (at large pr)+anything, etc.
In this article we are interested in making a criti-
cal analysis of this approach. In particular, we
wish to know whether conventional dynamics, which
only couples together partons which are nearby in
momentum space, can keep quarks from being
produced in deep-inelastic reactions.

FIG. 5. Deep-inelastic electroproduction in the parton
model. p labels the target proton, q the virtual photon,

p& the parton before being struck, and pf the parton after
being struck.

where the proton has large momentum P in the z
direction, vanishing transverse momentum, and
x = -q'/2q p. In such a frame one can consider
the infinite-momentum wave function and constit-
uents of the target proton. The momenta of the
struck parton before and after its absorption of
the virtual photon must then be

p( = (xp + m '/2xp, 0, xp),

III. INTUITIVE DISCUSSION OF FINAL STATES
IN THE QUARK-PARTON MODEL

Py= P&+e

= (xp+ (m'+ Q')/2xp, 4, xp),

(3.2)

A. Space-Time Argument

The discussion in Sec. II presented the physical
ideas of the quark-parton model in momentum
space. Now we will attempt to analyze the same
physical picture in real space-time. First, we
sketch the major issues before presenting details.

In the deep-inelastic process a, quark parton is
struck. It then propagates essentially freely and
generates a cascade of partons. Eventually the
partons of the cascade have finite momenta rela-
tive to some of the target partons left behind.
These cascade partons are supposed to interact
with the fragments of the target and carry away
the anomalous charge from the struck parton. ' Of
course, the cascade partons can interact with the
remnants of the target only if they can be gener-
ated in the same space-time vicinity as the target.
Since the struck parton is presumed to travel near
the speed of light, it is not clear a Priori that this
is possible. This is a very elementary point, but
it is not in evidence in the momentum-space for-
mulation of these ideas.

Let us be more precise. Consider the deep-in-
elastic process illustrated in Fig. 5. Choose the
proton and virtual-photon momenta to be, respec-
tively,

If = ~(Z-p, ), p=p, q= ~(Z+p, ) . (3.3)

These momenta are conjugate to the familiar
space-time variables,

7 =~(t z)+, X=X, a = — (t —z), (3.4)

respectively. Then the parton momenta before and
after the collision read

m 2 m 2

Pj Oy gj ~ If2 xP+
2~2 y

H,=, p, =g, q, =exp+2g g xP 2 UYxP

(3.5)

So, both the initial and final parton have q O(p)-
and differ significantly only in their transverse
momenta. This is convenient, since boosts B
which change transverse momenta but preserve
g are especially simple in the infinite-momentum
frame. They have a two-dimensional Galilean
structure' and transform momenta according to
the prescription

respectively. Dynamics in the infinite-momentum
frame is clearer when expressed in terms of the
variables H, P, and g instead of E, P, and p, . Re-
call the definitions '

p„=((p'+m')' ', 0, p)

= (p+ m /2p, 0, p),
q„=(0'/2xp, g, o),

(3.1)

P- P+qV,

0 0

where V is the velocity of the transformation.

(3 6)
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Thus, under such transformations P behaves as
a two-dimensional Galilean momentum, g as a
mass, and V as a two-dimensional velocity. Ob-
serve that the struck parton's momenta before and
after absorption of the virtual photon are related
via a Galilean boost of velocity

(3.'I)

So, the evolution of the struck parton into its cas-
cade can be first understood in a frame in which it
has no transverse momentum. Then applying the
boost defined by Eq. (3.7) produces the situation
of interest here.

Cascades which are characterized by short-
range correlations in momentum space have long
been studied in the form of multiperipheral models.
They are not traditionally studied in the infinite-
momentum frame, although their dynamics is
particularly transparent in such a formulation. "
Two crucial properties of a cascade as depicted
in Fig. 6 are:

(I) In each step of the cascade a certain average
fraction a (0& a& I) of the q of the mth parton is
carried off by the(m+1)st,

(R'(r) ))-In(q /q, )/Inn . (3.12)

67' 'g; (s.is)

The time needed to produce a parton of Galilean
mass g is then, approximately,

'd&'~q, — (3.14)

But from Eq. (3.8) the b,rl; in each step of the cas-
cade is

n =n~„-=(I—o)n; . (3.15)

So, ar, /hq, is independent of g, , and the integral
in Eq. (3.14) is just

Finally, the time z
„

it takes for a cascade to
produce a parton having g «g; can be estimated on
the basis of time dilation. The struck parton has
a certain invariant amplitude for cascading into
two others. If the cascade is then viewed in a. ref-
erence frame moving with respect to the struck
parton, the lifetime A7. of the parton to cascade
into two others is time dilated by a factor propor-
tional to g, ,

'0m+ z
—&~m ~ (3.8) (3.16}

(2) Since the cascade is characterized by short-
range correlations, the partons perform a random
walk in the plane transverse to the infinite-mo-
mentum direction. So, after m steps of the cas-
cade, the mean squared transverse distance be-
tween the first and mth parton is

(R'(m))- m . (3.9)

0m & Rc r (s.io)
where g, refers to the struck parton. Therefore,

ln(q /q;)- mlna .

Substituting into Eq. (3.9),

(3.11)

With these facts it is easy to estimate the two
most important quantities in our argument: the
time (on the average) it takes for a cascade to gen-
erate a parton possessing a negligible fraction of
the g; of the struck parton, and the mean squared
transverse position of that parton.

First consider the transverse position of the
mth parton on a cascade. It follows from (1) that
the average g of the m th parton is

At this point we have sufficient understanding of
a cascade of a parton with Galilean mass g,. and
transverse momentum P; =0 to consider ag"in the
cascade of the struck parton. After absorbing the
virtual photon, the struck parton has transverse
momentum Pz -—Q. One of the partons in its cas-
cade can interact with a parton remnant of the
target only if their relative subenergy is small.
From Eq. (3.6) we see that the transverse momen-
tum of the cascade parton of Galilean mass g is

P=qq/q, . (s.i 7)

In order to ensure that P be of order unity, one
needs

(s.i8)

This condition guarantees that the relevant sub-
energy can be small.

Now consider the transverse displacement X(r)
of the struck parton a time ~ after absorption of
the virtual photon From E. q. (3.7) and the Galilean
character of transverse boosts, it is

X(T) = (Galilean velocity)(time)

(s.i9)

FIG. 6. A multiperipheral cascade.

Similarly, this transverse distance is a good esti-
matefor the transverse distances of the fast
(q= q, ) products of the cascade. Consider X(r)
itself and the transverse distance of the "wee"
parton from X(7}, X„(r)—X(T) . If X„(r)grows
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with Q, then the wee parton produced in the cas-
cade cannot overlap in real space-time with the
target at X=O and presumably cannot interact with
it (Fig. 7). But the wee parton is produced at a
time

tic of the hadron (1 F, say). In the longitudinal
direction the wave function must be Lorentz con-
tracted by a factor proportional to the parton's g.
So, for illustrative purposes the initial wave func-
tion of the parton might be'

x a) i()'i7+ ps-P )i)

so

X(g )- (Q/)), )x )I,. —Q . (3.20)
xexp —,8 exp — X2 1

2Q 2'

~ X (~)
X (T) ~

X plane

~ ~

~ ~ ~

FIG. 7. The final-state parton configuration in the
transverse plane. The partons near the origin are frag-
ments of the target. The partons labeled X (7) through
X„(7)comprise the multiperipheral cascade of the
struck parton.

And the cascade performs a random walk from
its center, so

([X„()„)—X(T„)j ')-ln~ Q~, (3.21)

for ))/)), - I/~ Q~ . Therefore, as Q becomes large
the wee parton has a vanishingly small probability
of being produced near X=O. This completes the
argument.

It is interesting to discuss several aspects of
this argument in more detail. First is the time-
dilation argument which preceded Eq. (3.16). This
type of argument is central to the parton model.
In the description of e+p- e+anything, one views
the proton in the infinite-momentum frame defined
earlier, and argues that the internal interactions
between the fast partons are slowed down by time
dilation. Then one can argue that the virtual pho-
ton scatters incoherently off a quasifree parton.
So, if one wants to build a picture of final states
as has been suggested —where the final-state par-
ton-parton interactions are of the same character
as the parton-parton interactions that make up the
hadron —then Eq. (3.16) follows quite generally.

Furthermore, in the argument we had to imagine
that both the momentum and position of the struck
parton were approximately described by suitable
averages. Doing this can be subtle because of
the constraints of the uncertainty principle. To
be precise we can consider wave packets for the
parton before and after it was struck by the virtual
photon. Initially, the parton is confined in the
transverse direction X to a diameter characteris-

xexp[-2I) (1 —q'/))) ]

xexpf-2a'(P' —P) ], (3.23)

so the parton's transverse momentum and longi-
tudinal fraction ))'/)I have finite uncertainties.
After absorbing the virtual photon, the wave func-
tion of the struck parton is obtained from Eq.
(3.22) by applying a Galilean boost B (V =Q/q),
or by calculating the appropriate matrix element
of the external probe e~~'x,

,i, ( X 3) -i(a +P r+ qs-(P+Q) x)
4'f

x exp —
2 'g

1
2Q

1 - (13+Q)
x exp —,X—

20 'g

(3.24)

where

(Q+ P)'+m'
@+a

In particular, one notes that g& is localized in the
transverse plane about

x(r)= Q) ~,
n

and the uncertainty in this relation is finite. So,
the estimates used concerning Eq. (3.19) above
suffice in a careful discussion based on reasonable
wave functions. It is also clear that relations such
as Eq. (3.19) do not depend on the fine details of
g, and gz used for illustrative purposes here. "

A space-time picture can also be developed for
electron-positron annihilation. The timelike pho-
ton dissociates into a parton-antiparton pair with
mome nta

p, =(p+ m'/2p, P, 0),

p, =(p+m'/2p, P, O),

(3.22)

The momentum-space realization of P,. reads

g,. (v, P', ))') -e'"'exp -i(P' —P) ~—~
n
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where p =
~
P ~. In the quark-parton picture of final

states, these partons are then expected to initiate
cascades. The wee partons in each cascade are
then supposed to interact and neutralize the quark
charges that were initially present in each cas-
cade. To reduce this problem to the deep-inelas-
tic case just studied, we boost the partons p, and

p, along the z axis to large momentum. In this
frame both partons have the same q, but they are
moving apart with relative Galilean velocity of
2P/q in the transverse plane. Now the earlier
discussion of the important times and distances
in multiperipheral cascades applies here, and

again we conclude that the wee partons in each
cascade do not overlap in real space-time.

This concludes our intuitive discussion. Although
these arguments are not rigorously conclusive,
they strongly suggest that the dynamics which
holds the quark partons in must be of a newer and
more interesting nature than conventional multi-
peripheral mechanisms. More discussion of this
point will be given in Sec. V.

B. Energy Denominators and r-Ordered Graphs

Another, and somewhat more conventional, way
to understand the fact that multiperipheral mech-
anisms cannot generate the parton cascade illus-
trated in Fig. 3 is to study energy denominators
for particular diagrams. Consider first the par-
ton diagram shown in Fig. 8. In this process the
struck parton cascades and generates a wee par-
ton which interacts with a parton in the target.
Interpret the diagram as a p' graph, so it can il-
lustrate the dynamics of the cascade but does not
explicitly contain quantum numbers.

We want to know how the computation of this
diagram would have to proceed in order that it
satisfy the quark-parton physical picture. Clear-
ly, the simplest diagram in this class, Fig. 9(a),
contributes a term of order s ', while a graph
with one additional rung [Fig. 9(b)] or more con-
tributes terms of order s ' to vW, [s =(p+ q)'].
However, summing over the rungs in the cascade
of Fig. 8 might produce lns factors which could
sum to unity:

~
(2 lns) = 1.1 1

(O)

FIG. 9. (a) The simplest graph in the class of Fig. 8.
(b) One additional rung inserted into graph (a).

Such behavior is found in multiperipheral models
for on-shell single scattering processes. "'" If
this occurred, the multiplicity of secondaries in
the deep-inelastic process of Fig. 8 would grow
-lns, in agreement with the physical picture re-
viewed in Sec. II. Hence, in our graphical anal-
yses we will search for lns factors. If the calcula-
tions do not produce them, then short-range cor-
related multiperipheral mechanisms will not im-
plement the ideas of Sec. II.

Let us redraw Fig. 8 and consider the process
in the proton-photon center-of-mass frame with
r-ordered (old-fashioned perturbation-theory)
graphs as in Fig. 10. Following Feynman, ' we
interpret the scattering event as composed of two
parts. First, there are the wave functions of the
projectile (photon, say) and target illustrated in
Figs. 11(a) and 11(b). Second, there is an ex-
change of partons between these wave functions.
We recall that the longitudinal momenta of the par-
tons composing a hadron's wave function must sum
to the hadron's total longitudinal momentum.
Given these facts, which should be familiar, "we
can understand Figs. 8 and 10 simply. First,
since line i must be a member of both the right-
and left-moving wave functions, it must carry a
negligible longitudinal fraction, i.e., it is a wee
parton. " However, if this parton is wee, the en-
ergy denominators in the photon wave function are
of order p, its longitudinal momentum. Similarly,

=+ R OXIS

FIG. 8. A @3 parton-model graph with a multiperi-
pheral final-state interaction.

OX IS

FIG. 10. Old-fashioned perturbation-theory graph
representing the process of Fig. 8 in the photon-proton
center-of-mass frame.
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(b)

FIG. 12. A p~ parton-model graph with two multi-
peripheral chains in the initial state and a multiperiphe-
ral final-state inter action.

FIG. 11. (a) The photon wave function. (b) The pro-
ton wave function.

the energy denominators making up the proton
wave function are of order p. This means thateach
time we insert an additional parton having a finite
fraction of the longitudinal momentum of either
the photon or the proton into the cascade (line j of
Fig. 10), we pick up an additional energy denom-
inator and a suppression by a factor p '. Hence,
the cascade is strongly suppressed, cannot build
up a Regge pole, and would not survive in the high-
energy limit. Note that this argument did not even
have to suppose that the photon was virtual, i.e.,
the cascade mechanism depicted in Fig. 10 does
not even work for real photons. If, in addition,
one allowed the photon to become virtual, then the
argument becomes that much easier.

Let us turn now to a less trivial example. It is
clear that one way to test the space-time argu-
ment is to let the target hadron be large (have a
large area in the transverse plane). This idea
leads us to consider the graph in Fig.12: The tar-
get hadron consists of two multiperipheral chains,
a parton on one of those chains is struck, and that
parton generates a cascade. Since wee partons in
the target tend to spread out over large transverse
distances [(X'(«i))-ln«i], this graph is a good can-

didate. The square of the amplitude Fig. 12 can
be redrawn as the indicated discontinuity of a
Feynman graph in Fig. 13. One recognizes that it
is, in fact, the Mandelstam-cut diagram. Further-
more, if the photon is on shell, we know that this
graph can be important at high energy and does
show Regge-cut behavior in the variable s. Hence,
this graph is much more interesting than Fig. 8.
A detailed analysis of Fig. 13 will be given in Sec.
IV and the appendixes.

It is worthwhile, however, to attempt to under-
stand how the diagram works in simple terms.
One way to do this is to study the graph in the lab
frame with the virtual-photon momentum oriented
along the z axis:

(3.25)

p q=«},H~-~, and Q -~ with &«) '=@2/2p q fixed.
However, before turning to the relatively compli-
cated Mandelstam diagram, consider first the
simple ladder graph in Fig. 14. The wave function
for the virtual photon, shown in Fig. 15, has the
formal expression""

(3.26)

FIG. 13. The discontinuity giving the cross section
for the process of Fig. 12. This is the Mandelstam
discontinuity.

FIG. 14. The discontinuity of the simplest ladder mo-
del for deep-inelastic scattering.
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q) 0

b, H) EH' b, Hp
I

I

gt, K(

'gp, K p

Q~) K~

ln s

('9), K( j

= rapidityI

FIG. 16. Dominant configuration of partons in rapidity
contributing to the process of Fig. 14. There is a rap-
idity gap —in@ between the struck and next parton.

FIG. 15. A contribution to the photon wave function
relevant to the calculation of the discontinuity of Fig. 14.

inmth order of the A. p' interaction. Each line in
Fig. 15 is labeled with its longitudinal momentum
(P's or t)'s) and transverse momentum (L 's or
K 's), and the off,. indicate infinite-momentum en-
ergy denominators. Consider the denominator fac-
tor,

gq gg ]

Define a dimensionless, fractional variable x, ,

Then,

(3.28)

Similarly, the next factor 2P, ~, has the form

where

x, =p, /r4 &x, .
So, it is clear that if x, and x„say, were finite
fractions, the wave function Eq. (3.26) would be
suppressed by several powers of Q'. Therefore,
the important range of x, is very limited,

0 &x, & p, '/Q', x, &x„etc., (3.30)

where p is some characteristic mass. This means
that all the partons except (t)„K,) in the cascade
carry a negligible fraction of the photon's q, . In
fact, the subenergy of parton (p„L,) and the tar-
get becomes, roughly,

of Fig. 14 fall on the rapidity plot as in Fig. 16-
they are restricted to a finite subenergy of the
target end- and the related fact that the graph gen-
erates ln cu, but not ln s terms. "

Now we can return to the Mandelstam graph.
The v-ordered graphs in the lab frame for the
process shown in Fig. 12 are given in Fig. 17.
From our analysis above we have that all the par-
tons on the first chain have q values ~e except
the parton (q„K,). This means that all the energy
denominators, such as for intermediate state 5

labeled in Fig. 17, are -co '. So, by the uncer-
tainty principle, the total laboratory lifetime of
the virtual-photon state before interacting with
the target is -+. However, by time dilation, the
amplitude per unit time for the second cascade to
begin (vertex 2 in Fig. 1V) is proportional to th '.
And g, =g,. Therefore, the amplitude that it occur
in the available time interval (-rd) is -td/t), . This
amplitude goes to zero in the scaling region, which
implies that this graph damps out as a power of the
energy. To summarize, there just is not enough
time available for the multiperipheral cascades to
occur.

IV. PERTURBATION- THEORETIC REALIZATIONS

A. Motivation and Model

The simplest way in which we can try to realize
the assumptions of the parton model and also study
the effects of final-state interactions is in the con-
text of renormalized perturbation theory. The only
perturbation theories which are known to exhibit
Bjorken scaling for both annihilation and deep-in-
elastic regions are superrenormalizable theories, "
only one of which, namely the trilinear scalar the-

(3.31)

where s&, the scaling variable (x '), is a finite
number in the deep-inelastic region. Hence, on a
rapidity plot the most likely positions of the par-
tons in Fig. 14 would be as in Fig. 16. Also, since
the subenergy in Eq. (3.31) is -&o, the simple lad-
der graph must Reggeize in the variable u. This
is an elementary and well-known fact." Of inter-
est to us here are the facts that the internal lines

( It. Kt)

f irstl
chain

h. H5
I

I

proton

FIG. 17. Old-fashioned pertur bation-theory graph of
Fig. 15 in the laboratory frame.
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ory, exists in four dimensions. ' In renormaliza-
ble theories, even when we restrict ourselves to
those graphs which do not require renormalization,
we still fail to obtain scaling in the deep-inelastic
region. " Instead, there are logarithmic violations
of scaling, stemming from the fact that we are in
an exceptional momentum region. " In order to
retain scaling, which is fundamental to the parton
model, we resort to the artificial (noncovariant)
device of restricting the transverse-momentum
integrations. This artifice is due to Drell-Levy-
Yan." We shall consider models in which a virtu-
al parton produced by the target hadron is struck
by the photon and then interacts with the "core"
(remnants of the target) by a multiperipheral cas-
cade in which many partons are produced. Fur-
thermore, we shall consider the case where the
parton is permitted to undergo bremsstrahlung
prior to being struck. The effect of a cascade be-
ing produced prior to the interaction will also be
considered.

We work in the frame where the photon momen-
tum is q =(Q, -Q, 0) and the initial hadron momen-
tum is p=(m /rug, &uQ, O), where our components
are (+, —,T.). For a momentum k, k, = k, +k„
k =k, -k, , and k=(k„k,)."

B. The P and Drell-Lee Models

We first study a p' model, which, although un-
physical, does scale. " For simplicity we consider
scalar photons for which the scaling law requires

DiscA(v, q') - W(&u)/q',

where A is the amplitude whose discontinuity gives
the deep-inelastic cross section.

The first production mechanism considered is
that shown in Fig. 18(a), whose cross section
(neglecting interference) is given from the discon-
tinuity of Fig. 18(b). The graph corresponding to
Fig. 18(b) (without the discontinuity) is known to
behave like (lns)/s' at high energies" in the scat-
tering region (q' =m'). The absence of any ln" s
factors arising from the n ladder rungs is due to
the same mechanism that causes the absence of the
Amati-Fubini-Stanghellini (AFS) cut in planar
Feynman diagrams. " The contributions from the
two-particle intermediate states are canceled by
those from the multiparticle intermediate states.
Since we are taking an n-particle discontinuity,
it is necessary to check that the cancellations still
occur. Explicit calculation (Appendix A) reveals
that the discontinuity behaves like 1/s'. This was
to be expected since taking the n-particle discon-
tinuity still allows the two- and multiparticle dis-
continuities as before. It can also be seen that
the Cheng-Wu argument" for absence of the AFS

k+q q-k(

k(+k iI kt-kp

k2+k ]' kg-kp

k-p

kn-i kn

kn+k 1' kn+p

kit

k+q

k)+k

k2+k if

kn+k'

k-p

I

q-k& k+q

k )-kg I Ik(+k

kP-ks )Ik2+k'

I

I

I

I

kn', -kn
k n+ p

k'-
p

{b)

k

FIG. 18. (a) Deep-inelastic electroproduction with
final-state interactions in p theory. (b) Discontinuity
giving cross section for (a).

cut due to damping of the Reggeon in the external
mass variable is essentially unchanged by taking
the n-particle discontinuity.

In the deep-inelastic region, the graph (without
discontinuity) behaves like (1/q')'E(&u). The ex-
plicit calculation of Appendix A indicates that this
behavior obtains also for the n-particle discon-
tinuity of Fig. 18(b). Thus, we see that this pro-
duction mechanism does not contribute at high q',
since there are no ln" q' terms to sum to a power.
Thus, this is not a satisfactory final-state-inter-
action model.

A mention of the momentum distribution of the
final state will be of use for later discussions. It
is found that the leading power contribution comes
from the region where the first (leading) parton
has a+component of momentum Q+0(1/Q) and a
—component of order I/Q, while the rest have a
—component proportional to Q and a + component
of order 1/Q and are thus fragments of the target.
The sum of all —components except the first must
also be of order 1/Q.

Our second case of interest is that in which the
parton undergoes bremsstrahlung prior to being
struck, and then interacts with the core via a
multiperipheral cascade; see Fig. 19(a). The
cross section obtains from the discontinuity of the
Mandelstam graph, "Fig. 19(b), and the related
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FIG. 20. Simple final-state interaction discontinuity
in vector-gluon theory. + represents core.

C. The Fermion-Vector-Gluon Models

a&

'Pl y,
'

~ ~

'!+m~ '
Smd

I

~i !
~a

~ ~

l
~ ~

I
&n-f

p~ 8,
pp s~

pn-(

pn 8„,

FIG. 19. (a) Deep-inelastic electropr oduction with
production before and after photon interaction in Q

theory. (b) Mandelstam discontinuity giving cross sec-
tion for (a). Feynman parameters are those used in

Appendix 9.

"nondiagonal, " interference graphs (see Appendix
B). The Mandelstam graph behaves asymptotically
in the scattering region like (ln '"s)/s', "but, as
shown in Appendix B, behaves like (1/Q')'lnQ' in
the deep-inelastic region. This behavior is seen
to be a bound on the interference graphs. The lns
factors become inca factors in the large-co region.
The discontinuity behaves like (1/Q')'. Such be-
havior has already been seen in the simple ladder
graph" and is understood in terms of the behavior
of the Regge residue functions for large external
masses. That this behavior should extend to the
Regge cut of the Mandelstam graph is therefore
not surprising. Thus, the Mandelstam discontinu-
ity is damped by 2 powers of Q' as was the sim-
pler discontinuity. The distribution of particles
in the final state can be seen to be the same as in
the earlier case.

It is easy to see that this asymptotic vanishing
of the final-state interaction as (1/Q')' times the
scaling behavior and absence of ln" Q' factors
which could sum to powers extends to the case of
spin-one photons. It also occurs in Drell-Lee
models, "where the charged parton is a fermion,
but the interactions not involving the charged par-
ton are trilinear scalar couplings. The composite
nature of the initial hadron in their model is seen
to be irrelevant to this conclusion.

In this case the hadron and the struck parton are
considered to be spin--,' fermions. The core left
behind is treated as a neutral vector gluon despite
the fact that it will carry (fractional) charge. The
interaction is mediated by a neutral [SU(3) singletj
vector gluon. " The explicit introduction of a
charge algebra is seen to give no essential compli-
cations to the calculations. The same results
would obtain if the core was treated as a scalar or
pseudoscalar.

Since vector exchange causes partons of large
subenergy to scatter significantly, this interaction
actually lies outside the strict bounds of the mod-
el of Sec. II. We consider it because in such a
model the (1/Q')' factors which damped the as-
ymptotic behavior in the previous subsection will
be absent. One knows, for example, that a sim-
ple graph shown in Fig. 20 survives in the scaling
region. Since a quark-parton model of this type
would not normally scale,"we introduce a trans-
verse momentum cutoff in the sense of Drell,
Levy, and Yan."

The simplest mechanism for final-state inter-
actions, corresponding to Fig. 18 of the previous
subsection, is given by the discontinuities of
graphs, a typical one of which is shown in Fig. 21.
For reasons of gauge invariance we are forced to
include the graphs where vector gluons 1 and/or
2 interact before the photon.

The examination of this graph (see Appendix C)
indicates that it yields asymptotic forms for W,

'

and vS', which are independent of q' as desired.

! '
l

p 4 ~ 4 p

FIG. 21. Final-state interaction discontinuity in fer-
mion —vector-gluon theory.
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FIG. 22. Final-state parton distribution in the fer-
mion —vector-gluon model.

The same is true for the other positions of gluons
1 and/or 2.

As in the scalar case, the leading parton has a
+ component of momentum Q+ 0(1/Q) and a —com-
ponent of order 1/Q, while the rest have a —com-
ponent proportional to Q and a+component of or-
der 1/Q and are thus fragments of the target Th.e
rapidity distribution of final partons is shown in
Fig. 22. We note that there is a large rapidity
gap, and hence large relative subenergy between
the struck parton and the other produced partons,
so that it is extremely unlikely that the struck
parton can recombine with other partons. Thus,
in a quark-parton model of this type we are forced
to see a quark (parton) with fractional charge in
the final state.

We have explicitly excluded vector gluons from
the final state in this and later discontinuities.
The reason for this is the following: If we did al-
low them in the final state we would, by gauge in-
variance, be forced to consider graphs where the
gluons modify the photon vertices. Such modifica-
tions give nontrivial parton form factors in the
deep-inelastic region and are thus not in the spirit
of the parton model. ' If, however, we included
scalar and/or pseudoscalar particles, we could
allow these to appear in the final state, since in
a cutoff field theory, they give no vertex correc-
tions in the Bjorken limit. '

If we did include such particles, graphs of the
nature of Fig. 23 might naively be expected to give
a resolution to the problem of fractional charge in

FIG. 24. More complicated "Mandelstam" type of
discontinuity in the vector-gluon model.

the final state, since a meson now replaces the
leading parton in the final state. Such a graph,
however, has fermion exchange with large sub-
energies in the cascade and is thus damped like
1/Q'.

Next we should consider the equivalent of the
Mandelstam graph in ft)'. This is shown in Fig.
24. Here several parton-antiparton pairs are pro-
duced before a parton is struck by the photon and
cascades. This parton is not, however, the ini-
tially produced parton. In this mechanism the
final-state distribution is as before: a leading par-
ton (the struck parton) which may be considered
as a "photon fragment" and a number of target
fragments (quarks or mesons if present). Thus
the desired charge-exchange mechanism fails.

If we included scalar (pseudoscalar) mesons we
would have a second form of Mandelstam graph,
namely, that in which the produced parton emits
mesons by bremsstrahlung before being struck by
the photon, and then cascades. This is illustrated
in Fig. 25. The final-state distribution is the
same as before, and again the contribution scales.

Therefore, in all cases studied, the rapidity gap
between the struck parton and core is not filled
by the cascade. In addition, the average multi-
plicities are finite, since the sum of the + compo-
nents of momenta of particles in the target frag-
mentation region is always of order 1/Q. So, none
of these perturbation-theoretic parton models is a
realization of the Bjorken-Feynman model. ' '

I
I

I

s (
I
I
1
I

P p

FIG. 23. Final-state interaction modified to include
scalar (pseudoscalar) meson (broken line) in the final
state.

FIG. 25. Mandelstam discontinuity modified by in-
clusion of scalar (pseudoscalar) mesons.
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D. e'e Single Photon Annihilation

In the fI|' case, we consider first the process
where the timelike photon from the e'e annihila-
tion "decays" into a parton-antiparton pair. The
pair interacts via a multiperipheral-type cascade
producing a multiparticle final state. This pro-
cess is illustrated in Fig. 26(a). Its cross section
is given by the discontinuity of Fig 26.(b). We
first consider the case for scalar photons, where
we find that, except for the two-rung case which
behaves like Q ', the discontinuities behave as-
ymptotically like Q

' (with no powers of lnQ') (see
Appendix D), in contrast with the constant re-
quired for scaling.

For later reference, we note that except for the
initial parton-antiparton pair, one of which has +
momentum of order Q and —momentum of order
1/Q, while the other has —momentum of order Q
and + momentum of order 1/Q, the rest are pro-
duced in a bunch. The character of such a bunch
is that all the plus momenta behave like a fixed
power of Q, Q" say (-1 &o. &1), while the minus
momenta behave like Q . The total momentum
will then also have (+, -) components like
(Q", Q-").

%'e will also consider a second mechanism where
one of the produced particles undergoes brems-
strahlung (see Fig. 27). This time thediscontinuity
F scales, but the isolated parton has most of
either the + or —component of momentum (=Q),
while the other particles share the other large-

(a)
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I

(b)

(a)

I
I

I

I

I

I

I

I

I

I

I

I

I

(b)

FIG. 27. (a) Single-photon e e annihilation with frag-
mentation of one parton in $3 theory. (b) Discontinuity
yielding cross section for (a).

momentum component. This gives a large rapid-
ity gap between the isolated parton and the bunch,
go that charge exchange is impossible. The multi-
plicity is finite.

The replacement of the external lines by vector
photons leaves the results essentially unchanged
(except perhaps in the low-order cases), as does
the introduction of a single fermion loop as in the
Drell- Lee models.

For the cutoff fermion-vector-gluon model our
cross section for the cascade process is given by
the discontinuity of graphs such as that of Fig. 28.
Disallowing the lowest-order graph which is as-
sociated with the nontrivial form factors of such
a theory, we find a scaling result. The final-
state distribution is the same as found for the p'
case. Thus we find bunching and finite multiplici-
ties. The three forms of distribution are illus-
trated in Fig. 29. The first case [Fig. 29(a)]
shows the production of a bunch of partons with +
momenta of order Q, —momenta of order Q
(-1 &n &1). The second and third are the frag-
mentation a=+1 cases. As we see, although the

p+q

FIG. 26. (a) Single-photon e+e annihilation with fi-
nal-state interaction in Q3 theory. (b) Discontinuity
yielding the cross section for (a).

FIG. 28. e+e -annihilation final-state discontinuity
in fermion —vector-gluon theory.
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FIG. 29. Final-state distributions in e+e annihilation.
(a) Bunching in central region. (b}, (c) Parton frag-
mentation.

one-particle spectrum is going to be a relatively
flat curve from y=--,'lnQ' to y =-,'lnQ', the cor-
relation functions will show this strongly corre-
lated bunching. Since fermion exchange between
bunches would lead to damping of the amplitude by
a power of Q [(Q') " to be exact], a charge-ex-
change mechanism which would require one or
two such exchanges is damped by 1 power of Q'.
Thus for large Q' we cannot neutralize the quark
charge, and quarks would be seen in the final
state.

The equivalents of Fig. 27, viz. , Fig. 30, which
are required by gauge invariance, populate only
the fragmentation regions as in the P' case, and
thus do not change the above argument.

As in the deep-inelastic region, we have explic-
itly avoided vector-gluon production and its ac-
companying difficulties.

V. CONCLUSIONS AND DISCUSSION

We have examined the feasibility of a cascade
mechanism for final-state interactions for deep-
inelastic scattering and one-photon e'e annihila-
tion in the context of the quark-parton model. The
purpose of this was to see whether such interac-
tions could neutralize the quark charge and prevent
particles with quark quantum numbers from being
observed in the final state. We have examined this
both in an intuitive space-time argument and in
models based on relativistic perturbation theory.
The results in both arguments are the same. The
cascade mechanism fails, and quarks are pro-
duced in the final state.

It can be seen that modifications to our scheme,

I

7,

I
I

I

I

I

I

I

I

I

(b)

FIG. 30. (a) Parton-fragmentation discontinuity in
vector-gluon theory of e+e annihilation. (b) Crossed
graph required for gauge invariance.

in which some of the partons are produced prior
to the cascade which yields the struck parton, do
not affect the result. However, in the perturba-
tion-theory models one might suspect that if the
parton propagator were modified to prevent large
invariant parton masses, then the AFS result with
final states evenly distributed in the rapidity plot
would follow. But the space-time argument, being
valid for invariant parton masses near the mass
shell, shows that this is incorrect, and at best
the same conclusions hold as for normal propaga-
tors.

These models, of course, are artificial: First-
ly, because p' is not a physical theory, and the
cutoff procedure is noncovariant and nonunitary;
and secondly, our choice of Feynman diagrams
must be suitably restricted in order to obtain
scaling parton theories. The intuitive arguments
are at best plausibility arguments based on a
naive physical picture. Thus, we must consider
our results as suggestive but not conclusive.

Our spectrum of final-state partons in the deep-
inelastic case consists'of a leading parton travel-
ing in the direction of the incoming photon and a
finite number of target fragments. Absent is any
vestige of the flat rapidity distribution suggested
by the model described in Sec. II. For the annihi-
lation process our one-particle spectrum will be
smooth, but the two-and-more-particle correla-
tions will indicate that, with the exception of the
initially produced parton-antiparton pair, the rest
of the partons produced will be bunched.
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Our calculations also shed doubt on several ideas
and models in the literature. Models have been
proposed for the electromagnetic form factors of
hadrons, "deep-inelastic scattering, ' and elec-
tron-positron collisions. " These mode1s insert
strong- interaction amplitudes into an electromag-
netic process. For example, Ref. 29 considers a
model of the pion form factor based on the dia-
gram in Fig. 31. Here the strong final-state in-
teraction is represented by an on-shell Veneziano
amplitude, i.e., the dependence the amplitude
might have on the legs 1 and 2 is ignored. The
reason for doing this is simply that a reliable
prescription for taking a dual amplitude off the
mass shell is not known. However, one does know
how to extend simple ladder graphs off shell. In
fact, the composite nature of perturbation-theo-
retic Regge poles leads to residue functions which
fall to zero quickly as an external leg goes off
shell. " Our conclusion that the simple ladder-
graph model (Fig. 26) for the annihilation channel
does not satisfy the Bjorken-Feynman model can
be traced, in fact, to the damping provided by the
residue functions. In view of the fishnet" inter-
pretation of the Veneziano model, it is hard to
believe that the residue functions of a complete
dual model mould be less convergent than those of
ladder graphs. In any event, the models of Refs.
29-31 are not supported by explicit graphical cal-
culations.

Finally, we should ask ourselves what new fea-
tures parton-parton interactions must have in
order that the Bjorken-Feynman picture might
work. In addition to producing forces of short
range in momentum space, our multiperipheral
and perturbation-theory graphs generate forces
which also have only short range in configuration
space. If we let the interaction extend over long
distances in real space (a harmonic potential,
say), then quark partons could probably be con-
fined to the nucleon. In addition, our space-time
criticism, which assumes that the struck parton
propagates essentially freely, would not apply to
such models. Quark-parton models with long-
range forces have been discussed by Johnson. "
He has shown that such schemes have many good
features and, surprisingly, are not necessarily
in contradiction with the sacred tenets of field the-

ory. It remains to be seen if such models produce
a physical picture of deep-inelastic final states
in agreement with Bjorken- Feynman ideas. We
hope to answer this question in the near future.
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For each of the ladder rungs we have a factor

8(kq —k)~,)5((k, - k(+, ) —m ).
These factors order the momenta k, , viz. ,

(A2}

-&uq&k„&k„,& ~ ~ ~ &k, &k, &-Q, (A3a)

APPENDIX A: SINGLE CASCADE MODEL

FOR FINAL-STATE INTERACTIONS

IN tt}3THEORY

We consider the behavior of the discontinuity of
Fig. 18(b) evaluated in the deep-inelastic region
(q, =q, q =-Q, q=o, p, =m /aq, p =wq, p=o,
with Q-+ ~, up fixed). For simplicity we consider
the photons as scalars.

Since the asymptotic behavior of the graph itself
is known to be -(1/Q')', ""we will neglect all
terms which decrease faster by a power than this.
In fact, for our calculation, we shall concentrate
solely on the k integration, and thus pick only
those contributions which fall no faster than 1/Q',
since we will obtain a second factor of 1/Q' from
the k' integration and a third from the ladder
rungs. " Maximal use is made of previous mo-
mentum-space calculations, from which it is
gleaned that factors of lns (and hence lnQ') are
obtained only when our (+ ) and (-}components of
the ladder loop momenta are strongly ordered":

m'
&k~ &k„„&~ ~ ~ &k„&k„(Q . (A3b}

FIG. 31. Model of e+e annihilation considered in
Ref. 29. B4 is the relevant on-shell Veneziano cross
section.

Now we must examine the poles in the variable
k+.

The denominator k'-m'+i& gives rise to a pole
at
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k +m —ie
k, = (A4)

which is in the upper-half k, plane for k &0, and
in the lower half plane for k &0.

The denominator (k+ q}' —m'+ ie gives rise to a
pole at

k'+m' —jg
k -Q (A5)

which is in the upper half plane for k &Q, and in
the lower half plane for k &Q.

The denominator (k —p)'-m'+is gives rise to a
pole at

m2 f2+m2
k, = +

(dQ k -wQ (A6)

which is in the upper half plane for k &~Q, and
in the lower half plane for k & +Q.

The denominator (k+k~)'-m'+ie gives rise to
a pole at

(k&+k)'+m' —ie
k +k

0&k &(oQ . (A8)

We choose to close the k+ contour in the lower
half plane, hence picking up the residues of poles
(A4), (A5), and (A'7), but not (A6).

Before proceeding we introduce the definitions
of —and = as used in the following:

a bmea-ns lim a/b =const,
Q ~oo

a=b means lim a/b= 1.
Q ~ao

(Ag)

(A10)

Evaluated at the pole in (A4) our denominators
become

which is in the upper half plane for k &-k, , and
in the lower half plane for k &-k, , where Q
&-k& &coQ.

Thus, we see that for k &0 all poles are in the
upper half k, plane, while for k &uQ all poles
are in the lower half k, plane. Hence, the only
contribution to the k integral comes from the
range

'+m' —'6
(k+q)'-m'+ie=Q(k —Q)+(k —Q)

™~E —k'-m'+is, (All)

2 2 2
2 2 ' = m k +m —ie

(k —p) —m + i e = — (k —(()Q) + (k —(()Q) —k —m + i e,k
(A12)

2 2 ~

(k, + k }'—m ' + i e = k,.+ (k + k, ) + (k + k, ) —(k + k,.)' —m ' + i e, (A13)

while the measure for the k integration is dk /k, with 0&k &(dQ Now let u.s consider the behavior of
this integral for various regions of the k integration (transverse components assumed finite).

Case 1: k -1/Q. (All) and (A12) give a contribution -Q
Case 2: k -l. (All) and (A12) give a contribution -Q '.
Case 3: k -Q. Points with k = Q can be avoided by deforming the k integration contour. We obtain a

contribution -Q ' from (All) and (A12). From (A13) we see that we must require either k;, -1/Q or k,=-k . Unless k = —(dQ then the point k = —k, can be avoided (by -Q) by deformation of the contour.
But for k =-k, =(»Q, the measure dk /k damps this contribution. So all k, , -1/Q; there is no strong
ordering nor powers of lnQ'.

Next we consider the pole (A5}, which contributes for Q &k «dQ. The propagator denominators in this
case are

k2 2

k -m +is=-Qk +k —k -m +i~
" +m -~~

k -Q
2 '+

(k —0)' —m'+it= —
(Q ().' — Q) !).' — Q) )—P—

(dQ k -Q

(A14)

(A15)

(k, +k)'-m'+ie=(k„—Q)(k, +k )+(k, +k ) . —(k, +k)'-m'+ie, (A16)

while the measure for the k integration is dk /(k —Q).
We now consider the behavior of the various regions of k integration as follows.
Case 1: k -Q. The contribution of (A14) and (A15) alone is -Q ' unless k = Q or k = &uQ.
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Case 2: k =(dQ. If the denominators (A14) and (A15) are not to produce a contribution which damps
faster than -1/Q', then we must require k =&uQ+O(1/Q}. But this requires that the measure dk /(k —Q)
-1/Q', and so the contribution is still damped.

Case 3: k = Q. That (A14) and (A15) do not produce a damped contribution requires

—Q(,' k( ) Q.

This has a solution of the form k = Q+ O(l/Q). Hence,

(A16)

(A17)

Thus,

2+
(A18)

This condition makes both (A14) and (A15) each -Q. But we may avoid this point by a contour of the form
of Fig. 32, on which the contribution of (A14) and (A15) is -Q

Finally, we consider the contribution of poles of the form of (A7). For a typical pole of this class, the
denominators are

(kj+k) +m —iE'k2-m2+ig=-k k +k
k +k

—k -m +i& (A19}

(k+q)' —m'+ie =(Q-k, +)(k —Q)+(k —Q} —k -m +ie,(kg + k)'+ m' —i e
(A20}

(k —P) —m'+i~= — k + (k —&vQ)+(k —srQ) -k -m +is2 2 (k~+k} +m —ie
j+

Q kj +k (A21)

(k,.~ k(' —m' ~ le=(k, , —k„)(k, (,' } (k, (.') )-(k, 8'-m' ~ 'a, (A22}

while the measure is dk /(k +k~ ). The integra-
tion range is Q &- kj & k & uQ.

Case I: k -Q (required by integration Limits).
We exclude for the present k =-kj . This contri-
bution decreases faster than Q

' unless k, ,- 1/Q.
Then the contribution of (A19), (A20), and (A21)
is -Q '. For the total denominator contribution
to be of this order requires k, ,-l/Q or k, =-k .
This latter point can be avoided unless k, =-~Q,
but then the measure dk /(k +k~ ) damps this con-
tribution, since k g-k~ . So we must have all
k„-1/Q, and hence there is no strong ordering of
the k, +'s and hence no powers of lnQ'.

Case 2: k =-kj . First we shall exclude the
case -k, = Q. Assuming k + k~

-Q (a &1), we
find that denominators (A19), (A20), and (A21)
give at best a contribution -Q '", which is as-
ymptotically damped relative to Q '.

Case 3: k =-kj —-Q. Since the best behavior
(least damped) will come when k +k& -k —Q-Q
(a & I), say, we restrict our consideration to this
case. The best behavior (which occurs for k, ,
-1/Q) is that the denominators (A19), (A20), and
(A21) give a contribution Q

' ', which is damped

relative to Q '. Similar results hold for k =-kj
=coQ,

Case 4: SPecial case. We note here that one
might expect better asymptotic behavior for

(kq+ k}'+m' —ie
j+ k +k j»

so that

(kq+k)'+m' —ie
kj+

+

(A23)

(A24)

Subcuse 1:k, , -1/Q. Then k =-k~ +O(Q). This
point can be avoided by deforming the k contour
by a distance -Q. On such a contour we are back
to Case 1.

Imk 2
k

Q Q
IT)

Q
Rek

FIG. 32. Contour used to avoid point@ =@+(k + m )/Q
+0(1/Q2) in Appendix A.
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Subcase 2: k,+-Q (-1 &a &1). Then k

+0(Q ) and contour deformation permits us to
avoid this point by -Q, thus returning us to Case
2.

Subcase 3: k&, -Q. Put k~+ =xQ. Then 0&& ~1
from (A3b). Hence, we may avoid this point by at
least m'/Q and thus obtain a contribution -Q '
from the denominators (A19), (A20), and (A21)
(except for k =Q or k =&up, when they give a
contribution -Q ').

Hence, we have found that our asymptotic be-
havior of the discontinuity of Fig. 18(b) is -(1/Q )'
with no factors of 1nQ'. All the momenta k, have

k, + -1/Q. Thus, all the final-state particles ex-
cept the leading parton have plus momenta -1/Q
and minus momenta -Q. The sum of all their plus
components is also -1/Q. The cross section for
(n+ 1)-particle production will have a factor 1/n!
from the phase-space integrations. " This factor
causes the average multiplicity to be a constant
(independent of Q') for large Q and fixed v.

P=pP; P'=pP';

dpdp'= pdpdPdp'5(0+8' 1-)
(85}

We can rewrite the linearized form of g, viz. , g,
as

g= Cxg + py pg ply' yy f( ) (88)

-h = u, A+P,'B+ a,C .
So we may scale n4, P,', and ny viz. ,

(87)

04 —CTA4~ p g
—o'pg~ A g

—o'Qg~

(88}
dn4dp(dn, =c dgdn4cg, 'da, 5(n~+p,'+ n, —1).

Similarly, we may scale o.» P» and n, by o'. h

then becomes

h =ca'' h'(n).

Similarly,

(89)

Now, for the deep-inelastic case our coefficient
of Q' can be written as

APPENDIX B: THE MANDELSTAM GRAPH

g =co'g'(a).

Since Q' and s-~ together, with

s=(u —1)Q

(810)

The Mandelstam graph [Fig. 19(b)] behaves like
-(1/s) (lns) +" as s-~ in the scattering region
(q'=m'). """Thus, we expect that if the (lns) ~
becomes a (in@') '" in the deep-inelastic discon-
tinuity, then this factor would show up in the graph
itself in this region. Hence, for simplicity, we
restrict ourselves to the investigation of the graph
itself in the deep-inelastic region.

We use the Feynman-parameter techniques of
Ref. 21. The coefficient of s in the denominator is
of the form"

g = C(a}xy + R(n),
where

&= NgQ3 —Ot2&4 y

g = f21&3 —Q2Q4 .

(81)

(82)

(83)

After evaluating the pinch (which would exist in the
scattering region) at

x-P; y-P, (84)

we would find that R(n) vanishes if we put one ofp„.. . ,p„,=0 and one of py p, 0, It1s
found that putting either (a„a,) =0 or (n„n,) =0
and (n,', n,') =0 or (a,', n,'}=0 also causes R(a) to
vanish after evaluating the pinch. Then, for a typ-
ical pair (P, P'), we write

then we need to find the zeros of

((o —1)g-h
i.n order to determine the asymptotic behavior of
the amplitude.

We see that no longer do we have a pinching zero,
but merely the endpoint zeros at rr =0 and o'=0.
Hence, the asymptotic behavior in Q' is -(1/Q')'
in@2. The discontinuity is then -(1/Q } .

This asymptotic behavior of the discontinuity is
verified by explicit calculation, not presented
here because it is extremely lengthy and is rather
similar to that of Appendix A. The explicit calcu-
lation indicates that the same spectrum of final
states is obtained as for the case in Appendix A.

Now let us consider the "interference" discon-
tinuities referred to in Sec. IV B. If we denote the
amplitude for the production process, Fig. 19(a),
by A(1, 2, . . . ,m; m+ 1, . . . ,m+ n) then the Mandel-
stam discontinuity is proportional to

i

�~A{1,
2, . . . , m;m+1, . . . , m+n) ~'dy

(811)
where qr,

„

is (m +n)-particle phase space. A
typical interference contribution is then proportion-
al to

(812)
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where (i„.. . , i,„)is some permutation of (1, . . . , m+n). This serves to define what we mean by an "in-
terference" graph.

We note immediately that using Schwarz's inequality gives

A 1, 2, . . . , m;m+1, . . . , m+n dy +„.
Thus the asymptotic behavior of such discontinuities is bounded by that of the Mandelstam graph, and
hence, in the deep-inelastic case, by the (Q') ' result. A refinement of this argument can be used to elim-
inate the possibility of such terms having anomalous final-state spectra.

APPENDIX C: THE FERMION -VECTOR-
GLUON MODEL

We shall not present the detailed calculations in
this model since they are rather lengthy. Instead
we shall attempt to indicate the way in which they
differ from the scalar case. Reference is given
to previous literature which describes the compli-
cations of the introduction of spin.

The reason for considering the vector-exchange
models in the first place is that, whereas adding
an extra scalar exchange to a graph damps its
asymptotic behavior by a factor of 1/s (1/Q'),
adding an extra vector exchange does not change
the asymptotic power. " Thus, our final-state-
interaction graphs are known to scale a Priori, up
to possible powers of lnQ . Such difference in
behavior is brought about by the momentum-depen-
dent numerators which appear in theories with
spin.

The question of final-state distribution of partons
in such a model is in essence rather similar to the
scalar case. Studies of the ladder exchange by
Cheng and Wu, Chang and Fishbane, and Kogut"
show that the essential difference which the numer-
ator factors make to such an exchange is that they
allow only strong ordering of pairs of fermions
rather than individual fermions. This occurs be-
cause the strong ordering of the two members of
a pair involves fermion exchange, and thus damps
the asymptotic behavior over the case with only
vector exchange. As for the scalar case, a power
of lns arises from each strong ordering.

In our model (Fig. 21) the absence of such strong
ordering of ladder rungs is forced upon us by the
denominators of the sides of the ladder in exactly
the same way as for the scalar case treated in
Appendix A. Similar arguments extend to the
Mandelstam graph of Fig. 24. The spectrum of
final states is thus found to be the same as in the
scalar case, with its leading parton, and target
fragments, but no plateau or charge-exchange
mechanism.

APPENDIX D: ANNIHILATION IN Q THEORY

We consider the discontinuity of Fig. 26 in (Ij)'

theory. For convenience we restrict our calcula-
tion to scalar photons. We define the photon mo-
mentum to be P+q, where P =(0, Q, O}, q=(Q, 0, 0),
and our components are (+, —,Z). Thus, (p+q)'
=Q' as desired.

The ladder rungs each give a factor

6(k', —k'„,)5((k,. —k,„)'—m') .

These lead, as in Appendix A, to the orderings

and

Q& k & k
y

« k2 & ky & 0

0&k„,&k„,, & ~ ~ ~ &k„&k„&Q .

(D2a)

(D2b)

Of course, as indicated by previous authors,
such a theory does not scale, since strong order-
ing of the transverse momenta can give pow'ers of
lns. 2738 This behavior is suppressed by the Drell-
Levy-Yan artifice of restricting the transverse
momentum integrations. The theory then scales.

The annihilation processes in the cutoff vector-
gluon model are related to those in the scalar
case (Appendix D) in a similar manner. The final-
state-interaction graphs now contribute asymptot-
ically, but the spectrum shows the bunching of the
scalar case.

Finally, we should make a few comments about
minimally coupled massive vector-meson theories.
Although such theories are not gauge-invariant,
the Abelian vector field is coupled to a conserved
current. This allows us to get many properties of
gauge-invariant theories (renormalizability, Ward
identities, etc.), but requires that we always deal
with a set of diagrams which would preserve gauge
invariance in a massless vector-meson theory.
Our choice of diagrams is motivated by previous
experience.
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k'+m —ic
k

+ (D3)

which is in the upper half plane for k &0, and in
the lower half plane for k &0.

The pole in [(k-P)' —m'+i&] ' is at

k2+ m2 jg
k —Q

(D4)

which is in the upper half plane for k & Q, and in
the lower half plane for k &Q.

The pole in [(k&+k) —m +ie] ' is at

Now let us consider the poles in the k, variable.
We use the arguments of Appendix A to consider
only contributions -1/Q' from the k integration.
(N.B., the two rung case is not included in this
discussion. ) The poles in k, are given by the fol-
lowing.

The pole in [(k+ q)' —m'+ie] ' is at

(k+k } +m' —ie
k, =-k, , + (D5)

which is in the upper half plane for k & -k, , and
in the lower half plane for k &-k, We note that
(D2a) gives 0 & -k,. & Q.

Thus all poles are in the upper half k, plane for
k &0, and in the lower half plane for k & Q. So
we have a contribution only for

0&k &Q . (D8}

We choose to close the contour in the lower half
k, plane for 0& k &-', Q, thus picking up poles (D3)
and (D5} (provided -k, & —,'Q}, but not (D4). For
—,'Q& k & Q we close the contour in the upper half
plane picking up poles (D4) and (D5) (provided
-kj &-,'Q), but not (D5).

Let us first consider the range 0&k &-', Q. Eval-
uated at pole (D3) our denominators become

k'+ m' —jq
(k —p)' —m'+ is = -Q(k —Q) + (k —Q) —k' —m'+is (D7)

and

(k ~ k}'— ' ~ 'e =(k, , —Q)(k ~ k,. }~ (k ~ k,. )( —(k+ k, )' —m'+ ie, (D8)

(D9}

Hence,

while the measure for the k integration is dk /k . Now we examine our contributions to the integral.
Case 1: k -Q. Then the denominator (D7) gives a contribution -Q '. We must therefore require [from

(D8}]that k, , =Q+O(1/Q) or k =-k, , which can be avoided by deforming the k contour unless -k,. =-,'Q.
However, for k =-k, =~Q we see that dk /k will damp the contribution. Hence, we have only k„=Q
+ O(1/Q) (all i), and thus we have no strong ordering or powers of lnQ'.

Case 2: k -Q, -1& o(&1. The denominator (D7) then produces a contribution -Q '. We see that (D8)
requires that k, , - Q ~ -Q, while k,. ~ -Q". The mass-shell conditions will then require that k, , = Q
+O(Q ™)and k, -Q for a, ll i Thus, . we have no strong ordering or powers of lnQ'.

Case 3: k -1/Q. The denominator (D7} will give a contribution -Q '. (D8) requires that k +k,. -1/Q
and hence k, -1/Q. Therefore, we have no strong ordering or powers of lnQ'.

Case 4: Special case.

(k 2+ mQ —is)/k = Q .

k =(k'+m' —ie)/Q . (D10)

Since the minimum value of (D10) is m'/Q, we may deform our contour in a manner similar to Fig. 32.
On such a contour, the difference between the two sides of (D9) is -Q, and we return to Case 3.

Evaluated at pole (D5) (-k~ & —,'Q) our denominators are

(k + k,.) + m —is
(k+q) —m +is =(Q —k )k +k -k2 —mQ+ je

k +k,, 7

(k+k~}'+m —ie(k-p) —m +ie=-k. , (k —Q)+(k —Q) k2 m2+zqf+ k +k,. 7

(D11)

(D12)

(k+k)) +m —ie
(k+k, }'—m'+i& =(k, , —k„)(k,. +k )+(k,. +k ) —(k,. +k)' —m'+is,

J- (D13)
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l.e.,

(k+ k,.)'+m' —i~
k +k,. (D14)

(k+k,.} +m —ie
k =-k. + k.j+

Subcase I: k,.„-1/Qand thus k = -k, + O(Q).
Such a point can be avoided by -Q (unless k = —,'Q,
where the measure damps the contribution), and
thus we are back to Case 1.

Subcase Z: k&, -Q " (-1& o. & 1) and thus k =-k,.
+ O(Q ). Such a point can be avoided by -Q, thus
returning us to Cases 2 or 1.

Subcase 3: k, , —Q, k, , = xQ, say (x & 1). Thus
k =-k& +O(1/Q). The restriction on x enables us
to avoid this point by at least m'/Q. This returns
us to one of the earlier cases.

The second contribution of the second region
(-,'Q& k & Q) is obtained most easily by symmetry

and the measure is dk /(k +k,. ). The range of
integration is -k,. &k &-,'Q.

Case I: k -Q. The contribution of (D11) and

(D12) will decrease faster than 1/Q' unless k, ,
-1/Q, when it is -1/Q . Then (D13) requires that
k„-1/Qor k =-k, This second point can be
avoided unless -k,. = &Q or -k,. =-k, For the
former the measure dk /(k +k, ) damps the inte-
gral. For the latter (D12) ' behaves like -Q '(k
+k, ) and damps the integral. Thus k, , -1/Q (all
i}, and there is no strong ordering to produce pow-
ers of lnQ'.

The other way of obtaining a contribution -1/Q'
is to require k, , =Q+0(1/Q}. We see immediately
(by symmetry) that this just requires k, , = Q+0(1/
Q) (all i), and hence no strong ordering or powers
of lnQ2.

Case 2: k - Q (-1 & cL & 1). We note that this
obtains only if -k,. ~ -Q . The contribution of
(D11) and (D12) damps faster than Q

' unless k„
& - Q (or Q —k, „&-Q ), when this contribution
-Q '. This requires that in (D13), that k, &-Q
and k, , &-Q "(or Q —k, , &-Q }for all t. The
mass-shell conditions then demand that k, - Q
and k, , -Q [or k, , =Q+O(Q }]for alii Thus.

we have no strong ordering or powers of lnQ'.
Case 3: SPecial case.

from the first. To do this we define k =p —q —k,
k,. =-P+q —k„„,Under this transformation, we
merely invert the graph and thus find the same ex-
pression in terms of the variables k, k,. as we had
previously in terms of the variables k and k, The
region &Q&k &Q becomes 0&k &-,'Q and the up-
per-half k, plane becomes the lower-half h, plane.
Thus this second region gives exactly the same
contribution as the first.

Hence, we see that the final state consists of
one parton with + momentum =Q and —momen-
tum -1/Q, and an antiparton with —momentum
=Q, and + momentum -1/Q. In addition, there is
a bunch of partons whose + momenta -Q and
whose —momenta -Q" (-1& n& 1) and whose sum
of + momenta -Q and whose sum of —momenta
-Q', as depicted in Fig. 29(a). We also have the
degenerate cases (n =+1) where either one parton
has + momentum =Q and —momentum -1/Q, while
the rest have + momenta -1/Q and —momenta
-Q, or vice versa [Figs. 29(b), 29(c)].

The multiplicities in each case are easily seen
to be finite.

We will now consider the second type of e'e
annihilation discontinuity depicted in Fig. 27. The
graph itself is known to behave like 1/Q' except
for the lowest-order case,"which we shall ignore.

In order that the denominators of lines 2 and 3
should not damp the contribution, we must require
that each have a momentum whose square is finite.
For this to obtain requires line 1 to carry all ex-
cept an amount -1/Q of either the plus or the mi-
nus component of the momentum P + q and -1/Q
of the other component. For convenience we con-
sider line 1 to carry + momentum =Q and hence
—momentum -1/Q. Then lines 2 and 3 carry—
momentum =Q and + momentum -1/Q.

Since 2 and 3 have a finite invariant "mass, "
we can perform a z boost and obtain the situation
where 2 and 3 have all momentum components
finite. In this frame all the particles produced by
2 (or 3) will necessarily have finite momenta.
Boosting back to the original frame, all these
particles have —momenta -Q and + momenta
-1/Q, and are produced with a finite multiplicity
The same result is true for the case where the +
and —components interchange roles. Hence, we
populate the regions of Figs. 29(b) and 29(c).
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